
Sorting with Human Intelligence
Cole Kurashige

Harvey Mudd College

March
2020

Abstract
Many comparison-based sorting algorithms have been introduced in

years past, but none are capable of comparing elements of two different
types. We present a novel algorithm called Turksort which uses human
intelligence to sort lists with truly arbitrary contents. We also present
an implementation that can be found at https://github.com/cole-k/
turksort. We analyze its performance with respect to time, accuracy, as
well as a novel metric called monetary complexity.

1 Background
Lower bounds for time and space complexity have been long-established for
comparison-based sorting algorithms. Many sorting algorithms have been de-
veloped which vary in the trade-offs they make for these complexities. Little
has been done, however, to examine what it means to make a comparison.

In statically-typed programming languages like Java or C++, comparisons
such as equal to (==) or greater than (>) are often restricted to operating on two
elements of the same type1. These languages consider it a compilation error to
compare elements of differing types.

Dynamically-typed programming languages like Python do not consider it a
compilation error; however, it is usually a runtime error to make these compar-
isons.

Listing 1: Comparisons in Python 3.7.6
>>> −1 > ’−2 ’
Traceback (most r e c ent c a l l l a s t) :

F i l e ”<std in >”, l i n e 1 , in <module>
TypeError : ’> ’ not supported between i n s t a n c e s o f ’ int ’ and ’ s t r ’

JavaScript, ever the staunch opponent of reason, will gladly compare two
objects of differing types. But just because JavaScript can do something does
not mean that JavaScript does it right.

1At least, without trickery or custom comparators.

25

258

It will correctly report that -1 is greater than "-2", but it erroneously
considers "-1" less than "-2". It also doesn’t get that "three" is less than
"four", and it certainly does not know that "one pound of feathers" is just
as heavy as "one pound of bricks".

Listing 2: Comparisons in JavaScript (Node.js 12.12.0)
> −1 > ”−2”
true
> ”−1” > ”−2”
f a l s e

> ” three ” < ” four ”
f a l s e

> ”one pound o f f e a t h e r s ” == ”one pound o f b r i c k s ”
f a l s e

Though it would be enjoyable to continue to mock JavaScript and its many
questionable design choices, we cannot fault it much for these shortcomings.

JavaScript, like any programming language, interprets code. It treats queries
like "-1" > "-2" as being a comparison on characters, not numbers, even if we
humans can plainly see that JavaScript is being asked to compare negative one
and negative two. But we cannot call JavaScript an idiot without calling it a
savant. It can perform remarkably complex calculations in the blink of an eye
or bring the fastest of hardware to a slow grind.

Computers are limited at processing much of the information that is so easy
for us humans to immediately understand, like pictures of dogs or whether "-1"
is greater than "-2". And we are limited at processing much of the information
that is so easy for computers to understand, like the exact colors of the millions
of pixels in a picture of a dog or the product of two very large numbers.

Listing 3: Complex Operations in JavaScript (Node.js 12.12.0)
> 0 .1 + 0 .2
0.30000000000000004
> 1000000000 ∗ 500000000
500000000000000000

Together, computers and humans can cover for each other’s inadequacies,
which is the premise of Human Intelligence Sorting. This type of sorting has
yet to been realized in traditional sorting algorithms. At least until now.

2 Turksort
The idea behind Turksort is simple: let computers handle all of the sorting
tedium and let humans handle all of the comparisons. It ends up being not that
different from most sorting algorithms.

The algorithm differs only when two values need to be compared. When
this happens, a form asking which of the two is greater2 is generated. This

2“Neither” is an option, too.

259

Figure 1: How Turksort comparisons work.

form is sent to Amazon’s Mechanical Turk (MTurk)3 where a worker (known
as a “Turker”) fills it out. The answers is sent back and then used for the
comparison. Figure 1 depicts this process.

An implementation of Turksort is available at https://github.com/cole-k/
turksort. Any analyses in this paper will be with reference to this implemen-
tation. It is worth noting that Turksort refers to any algorithm that sorts using
Turker-based comparisons, so other variants may be developed.

The implementation is a modification of quicksort. Quicksort works by se-
lecting an element in the list (called the “pivot”) and comparing all of the other
elements to it. It then partitions the list into three groups: those less than,
equal to, or greater than the pivot. It recursively sorts all three partitions and
combines them in order, producing a sorted array.

The partitioning process requires queries to be made comparing the pivot
to each of the other elements in the list. These comparisons are collected and
sent to MTurk for evaluation. This allows us to batch the computations, since
querying MTurk is slow in comparison to regular comparison. The answers from
MTurk are then used in the partitioning, and the algorithm proceeds as usual.

3 Analysis
In this section, we analyze the performance of Turksort (section 3.1) as well as
its accuracy (section 3.2 on the following page).

3.1 Performance
Turksort is not an algorithm whose performance should be measured by tradi-
tional means. It, however, can be.

Since it retries until it gets a response from the Turker, Turksort technically
has an unbounded time complexity. Even assuming that the response time from
the Turker is bounded and proportionate to the query size, the asymptotic time
complexity is that of quicksort. The average response time, even for shorter

3https://www.mturk.com/

260

queries, is around 5 minutes, so the constants on the time complexity are very
large.

The novel performance measurement we propose for Turksort is a cost met-
ric. We call it monetary complexity. This is the asymptotic cost of performing
a computation. Because one currency differs from other currencies by a scaling
factor, the monetary complexity’s monetary base does not matter, much like
logarithmic base in asymptotic complexity does not matter. We use a monetary
base of USD.

It takes a Turker about 1 second to answer a single query. Since minimum
wage in California is presently $12.00, we pay 1 cent for every 3 queries a Turker
answers, paying a floor of 1 cent if they are answering fewer than 3. We measured
the monetary complexity of Turksort with respect to the number of elements in
the list, with lists up to size 10000. We calculated the cost as being the average
of five trials. Because the authors do not have any grant money, testing was
done using a simulated Turker.

We introduce a new notation $(f(n)) to to denote monetary complexity: it
means that a computation has cost asymptotically proportionate to f(n). Turk-
sort has a monetary complexity of $(n log n); other common sorting algorithms
have an effective monetary complexity of $(1)4. You can observe this complexity
in figure 2 on the next page.

It is evident that Turksort should only be used in cases where traditional
computing does not have sufficient intelligence. The tradeoffs for using Turksort
are both time and money, although common adages suggest that this is only a
single tradeoff. In section 4 on the following page we discuss potential solutions
to these tradeoffs. As it turns out, there is a third, unexpected tradeoff, which
is accuracy. We discuss this below.

3.2 Accuracy
Surprisingly, Turksort is not a deterministic algorithm. This is because hu-
mans are not deterministic5. Not only is Turksort nondeterministic, it is also
sometimes wrong. This is because Turkers do not always perform the right com-
putations. Even on simple queries, such as 2 > 3, they can give an incorrect
answer.

This does not mean that Turksort is a useless sorting algorithm. There is
a simple tradeoff between accuracy and speed: the less time a Turker spends
answering a question, the more likely it is to be incorrect. Turksort is already not
winning any races, and that is fine since it serves a specific purpose that regular
sorting algorithms do not. So making it slightly slower for greater accuracy is
a worthwhile tradeoff. We discuss how to mitigate the problem of accuracy by
making more or slower queries in section 4 on the next page.

4Though they cost money by way of using electricity, this is a neglible cost and can be
considered effectively constant.

5Although it is unknown whether individual humans are deterministic, in general no two
humans perform comparisons exactly alike.

261

Figure 2: The monetary complexity of Turksort plotted for lists of size up to
10000.

4 Future Work
In the previous section, we discussed some limitations of Turksort. In this
section we will discuss how these limitaitons may be overcome. Section 4.1
discusses ways to improve its accuracy and section 4.2 on the next page discusses
ways to improve its performance. Turksort is very widely applicable and useful,
so we do not need to mention potential applications or uses.

4.1 Improving Accuracy
The most important problem Turksort presently faces is an accuracy issue.
There are two potential solutions.

First, Turkers could be forcibly slowed down by imposing a time limit before
they can answer a comparison. This will prevent them from answering so fast
that they get it wrong. The bulk of the time spent waiting in Turksort is in
waiting for a Turker to start responding, so this will not extend the duration of
the algorithm significantly, especially for shorter queries.

Second, Turksort could issue multiple requests for the same query. This
way, majority voting from the Turkers could be used to increase the accuracy.
Because these queries would be sent out in parallel, it is unlikely that this will
have significant impacts on time. This has the additional benefit of making
it easier for Turksort to sort so-called “trick comparisons,” like a query of "a
pound of bricks" > "a pound of feathers". If, during a computation, a
query is suspected of being a “trick comparison,” the algorithm can take the
minority response instead.

262

4.2 Improving Performance
Performance is less important for Turksort, given the time it takes to answer
queries, but as the field of Human Intelligence Sorting grows, faster and cheaper
variants will become more useful.

One way of improving performance is parallelization. Since queries take a
long time to answer, Turksort could issue multiple queries at once. This can
either be realized by modifying the underlying sorting algorithm to be more
parallel, by making all

(
n
2

)
comparison queries at once (thereby increasing the

$(n log n) monetary complexity to $(n2)), or by performing “branch prediction”
and guessing what the next queries might be.

An obvious way of reducing the monetary complexity is to slow the rate at
which Turkers are rewarded. Though it might seem illegal to not pay Turkers
minimum wage, Turksort does not need to pay its Turkers since the gratification
that they are advancing human progress is payment enough. However, without
large constants, we believe $(1) Turksort algorithms to be impossible, as Turkers
are not motivated by this gratification. We are presently exploring a $(log2 n)
variant of Turksort.

5 Acknowledgements
We would like to acknowledge Arya Massarat, Andrew Pham, and Giselle Ser-
ate for testing the algorithm for $(1) monetary cost. We would also like to
acknowledge all of the Turkers who tested the paid version of the algorithm.
And we would finally like to acknowledge Andrew Pham, Giselle Serate, and
Max Tepermeister for proof reading this paper.

Finally, we would like to acknowledge a blog post by Mikey Levine describing
a similar idea with the same name6 for teaching us to search the internet more
carefully after we come up with so-called “novel” ideas and then write papers on
them. Indeed, careful inspection reveals that this general idea has been explored
a few times prior, although thankfully not in the same ways as this paper.

6http://games.hazzens.com/blog/2014/02/27/turk_sort.html

263

